Hearing Aids

Carol De Filippo

Viet Nam Teacher Education Institute

June 2010

Topics: Hearing Aids

- Benefits
- Components
- Technologies
- Styles
- Fitting
- Care
- Classroom teacher tasks

Hearing Aids ... for *all* degrees of hearing loss

- Mild Hearing Loss
 - Very helpful for hearing high-frequency speech sounds (examples: p, t, k, f, s, sh)
 - Especially beneficial when hearing loss reaches 30-40 dB HL
- Moderate to Severe Hearing Loss
 - High motivation
 - High benefit

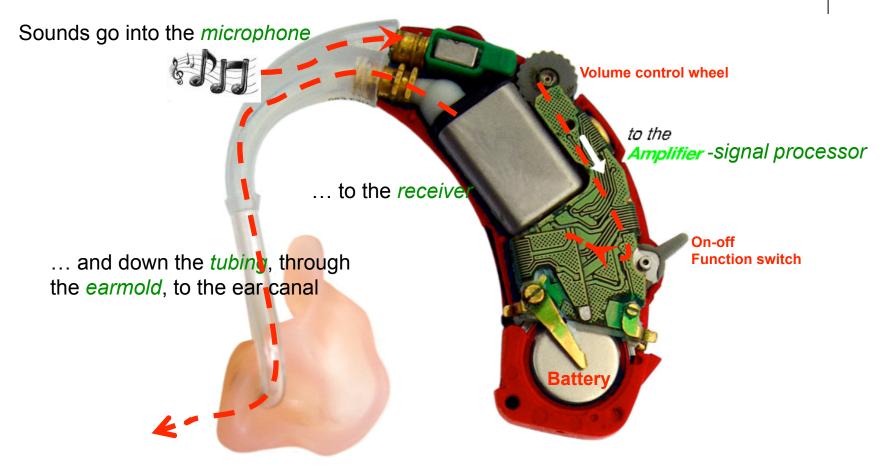
Profound Hearing Loss

- Great variation in benefit
 - May shift functional status to "hard-of-hearing"
 - May not be a choice for those who identify as culturally Deaf
- Factors that influence benefit
 - Age when hearing loss was identified
 - Type of hearing loss and progression of loss
 - Age when hearing aid was first used (duration of deafness)
 - Exposure to spoken language
 - Consistency of listening experience
 - Family support
 - School support

Benefits of Hearing Aids

- Expanded communication options
 - Greater hearing aid use correlates with increased speech intelligibility
 - Greater hearing aid use correlates with more effective use of speechreading
- Education gains
 - Continued hearing aid use correlates with higher academic achievement
 - Duration of hearing aid use correlates with language skill level

/www.time4speech.com.au/Page2-Speech-Sounds/



Reasons for nonuse in the U.S.

- Lack of encouragement
- Lack of models (successful adults in the environment with hearing aids)
- Lack of support
- Lack of auditory environment (no need to listen)
- Older children's concern that a hearing is very noticeable; peer pressure
- Poor hearing aid fit, which leads to poor benefit

Basic hearing aid components

http://www.vanasch.school.nz/flash-window.php?flash_file=hearaid_animation.swf

• Microphone

- Collects sound waves from the air
- Convert waves to an electronic signal

Signal processor

Increases amplitude of the signal

 Modifies signal to ensure audibility, comfort, and protection from loud sound

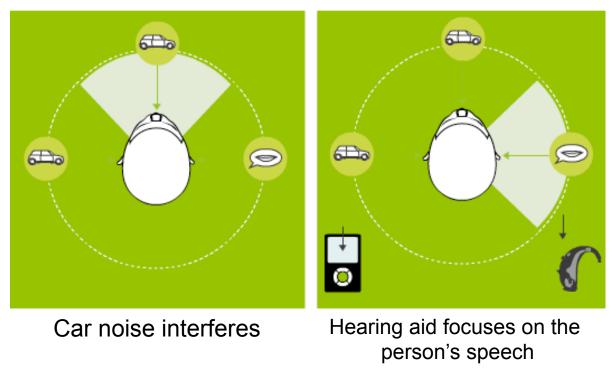
• Receiver

- Converts electronic signal back to acoustic sound waves
- Battery
 - Provides power

• Digital signal processing

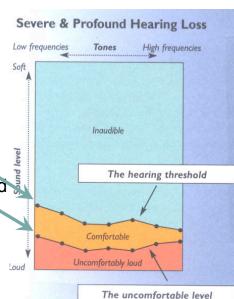
- Precise control of all fitting parameters
- Takes up less space, so aid can be smaller
- Analyzes incoming signals and then selects the appropriate processing strategy
 - Examples: automatic noise reduction, automatic speech compression

• Multiple programs

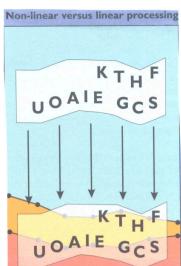

- Hearing aid settings are stored for several different listening situations
- Examples: one-to-one quiet conversation, large-group meeting, telephone

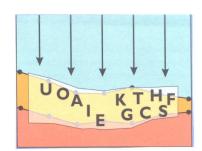

Bluetooth connectivity

- Wireless communication between a hearing aid and another device (examples: cell phone, music player, hearing aid on the other ear)
- Remote control to select programs and settings


• Microphones

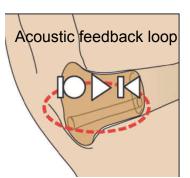
- Omni-directional: Takes in sound from all directions
- Directional: Takes in sound from all directions
- Demonstration





- Compression amplification
 - The hearing aid automatically fits the speech signal into the listener's range of hearing
 - Above the threshold of detection
 - Below the threshold of discomfort
 - Without distorting the quality of the sound

- Amount of amplification adapts to the level of the input
 - Weak inputs are amplified more
 - High-level inputs are amplified less


Feedback cancellation

- A squealing sound made by the hearing aid
- Caused when the amplified sound is re-amplified
- Can be controlled by digital sound processing

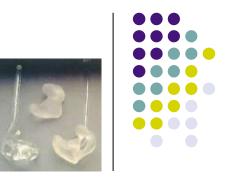
• Telephone connection

- Telecoil
 - A special circuit that picks up and amplifies the electromagnetic signals that come out of a telephone handset (or any loop of wire)
 - Blocks out surrounding noise

Direct audio input

- To connect to devices such as TV, telephone, computer, CD player
- Hearing aid has an external connector or contacts
 - To insert a mini-plug to another device
 - To attach a "boot" and mini-plug that connects to another device
 - To attach a "boot" with a tiny FM radio receiver that picks up the signal from another device
- Improves the signal because it bypasses the hearing aid microphone and eliminates background noise

www.unitron.com/es/360-direct-audio-input.pdf



- Earmold materials and features
 - A good earmold reduces many hearing aid problems
 - Materials
 - Silicone
 - Softest
 - For sports; to control acoustic feedback (squeal)
 - Lucite
 - Hard; easily modified
 - More durable
 - NOT used with young children to avoid injury if struck on the side of the head
 - Earmold tubing
 - Shape and thickness can change the sound output
 - Will harden
 - Needs to be changed every 6-12 months
 - Earmold venting

Reduces occlusion effect (annoyance from talking, chewing)

Styles of Hearing Aids

- In-the-ear (ITE)
- Behind-the-ear (BTE)

ITE

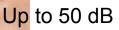
- Body aid
- Bone-Anchored Hearing Aid (BAHA)
- Tactile aids

http://www.riversideonline.com/health_reference/Ear-Nose-Throat/HQ00812.cfm

In-the-Ear Hearing Aids

Advantages

- Small size
- Comfort (depends on the individual)
- Not very noticeable
- Sound quality
- Very little wind noise
- CIC & ITC can reduce occlusion effect



Up to 50 dB

Completely-in-the-canal (CIC)

In-the-canal (ITC)

In-the-ear (ITE)

In-the-Ear Hearing Aids

Disadvantages

- Cannot fit severe or profound losses
- More expensive (custom fit housing)
- More difficult to manipulate
- May have fewer features (no telephone connection, directional microphone, venting)
- May need remote control device
- Prone to wax blockage
- May be uncomfortable
- Easier to lose
- Need loaner when out for repair

ITC

Behind-the-Ear Hearing Aids

Advantages

- High power for profound hearing loss
- Least expensive
- Most flexible to fit a wide range of needs
- User can wear a loaner aid with his own earmold when repairs are needed
- Multiple features
 - Direct audio input or FM input
 - Telephone connection (telecoil)
 - Program switch
 - Directional microphone
 - Durable
 - Easy to manipulate
 - Longest battery life
 - Full earmold venting possible

www.searshearing.ca/products/types.php

Disadvantages

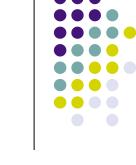
- Less comfortable on the ear (depends on the individual)
- Wind noise (depends on location of the microphone)
- More noticeable

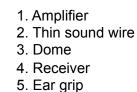
Advances in BTE design

• Thin-tube, open-ear fit

- Avoids a fitted earmold and leaves the ear canal more open
- The more open the mold, the more comfortable
- Open system advantages:
 - Ventilation of the ear canal
 - Avoids overheating
 - Avoids accumulation of moisture
 - Creates more natural sounding voice
 - Potential for optimal amplification in the high frequencies
- Works for mild & moderate losses

CONVENTIONAL


OPEN-EAR FIT


Advances in BTE design

• Receiver-in-the ear (RITE)

- Avoids acoustic resonance of earmold tubing
- Places sound further down the ear canal
- Can improve clarity of the signal
 - Can provide a smooth frequency response

www.oticonusa.com/.../HearingAidSelection.html

Closed dome for greater hearing loss

Body Aids

Advantages

- Highest gain (example: up to 130 dB)
- Controls are easy to manipulate (for small children; elderly people)
- Has many features with flexible fitting options

Disadvantages

- Cords can break
- Cord and "box" are very noticeable
- No directional microphone
- May not be programmable
- May not have a digital processor

Tactile Aids

Design

- Vibrators are used to deliver the acoustic signal to the skin (fingers, forearm, torso, or back)
- Example: Two vibrators might represent low frequencies (vowels) and high frequencies (consonants)

Advantages

- Provides access to the rhythmic pattern of speech
- Beneficial as a lipreading aid
- Helpful for speech training

Disadvantages

- Useful only in quiet settings
- Cannot obtain detailed frequency information

Bone-Anchored Hearing Aid BAHA

3. Implant

- For persons with conductive or mixed hearing loss (outer or middle ear problems)
 - Chronic otitis media (middle ear infection)
 - Microtia or other malformations of the outer ear or middle ear (congenital or due to trauma or cancer)

1. Processor

A surgically implanted system

Abutment

Processor

http://www.umm.edu/otolaryngology/baha.htm

http://products.cochlearamericas.com/baha/introduction-to-baha

2. Abutment

Binaural hearing aids

• The binaural advantage

Eliminates head shadow

- Loudness summation
 - A listener with high thresholds can get a "boost" by using two aids
 - Less amplification is needed because a signal received by two ears is heard as "louder" than the same signal received by one ear
- Binaural squelch
 - It is much easier to pick a signal out of the noise when the brain receives information from both ears
- Localization
 - The brain can calculate the direction of the signal with information from two ears (localization is impossible with input from one ear only)
- Convenience
 - If one hearing aid needs repair, the listener does not have to go without amplification

• **Disadvantages**

- All costs are doubled
 - Purchase costs
 - Maintenance and repair costs
- The combined signals may not blend
 - There may be a significant difference between ears in threshold or sound quality
 - The brain may require a lot of training to "pay attention" to the new input if one ear has not been stimulated in a long time
 - Neural capacity to use the input may have diminished

Hearing aid fitting

1. Fitting Stage

- Select a hearing aid with the desired gain and other features
- Use a computerized program to adjust the hearing aid to a "prescription" (rules for setting hearing aid levels)
 - Provide enough amplification so that soft sounds can be heard
 - Provide limits so that loud sounds are not uncomfortable

2. Verification Stage

- Measure electroacoustic properties of the hearing aid
- Perform "real-ear measurements"
 - Place small microphone in ear canal
 - Measure sound reception in open ear canal
 - Measure sound reception in ear canal with HA in place
 - Calculate difference with and without HA
 - Compare gain to amplification prescription
 - Adjust the HA as needed to match prescription

- 3. Validation stage
 - Measure benefit
 - Speech recognition tests
 - Parent report
 - Self report (questionnaires, inventories)

Hearing aid care

Cautions

- Do not place a hearing aid in direct heat or sunlight (example, hot car)
- Avoid dropping the aid
- Avoid getting the aid wet (no swimming or showering)
- Keep aid away from pets and small children
- Daily care of the hearing aid
 - Wipe off any dirt or moisture with a soft, dry cloth
 - Remove earwax with special wire pick
 - Remove battery or open battery compartment overnight
 - Store overnight in a "dry-sac" (with a desiccant to absorb moisture)
 - Check battery voltage and replace battery when low
 - Remove dead batteries promptly
 - Turn aid off when not in use

Hearing aid care

• BTE earmold and tubing

- Life expectancy of earmold/tubing is 1 year for an adult, 3 months for a child
- Material shrinks over time, which will cause feedback
- Clean every 1-7 days
 - Use warm water & soap
 - Remove all moisture by blowing air through the tubing

Classroom hearing aid checks

1. Visual Inspection

- Check earmold
 - Moisture
 - Wax
- Inspect the case
 - Cracks
 - Broken or missing parts
- Inspect hook and earmold tubing
 - Hard
 - Cracked, split, punctured
 - Twisted tubing
- Check battery and battery compartment
 - Match + to +
 - Measure voltage
 - Clean any corrosion with sandpaper or eraser
- Inspect cords for visible breaks

2. Listening Check #1

- Turn hearing aid volume full on
- Plug end of earmold
- Check for sound leakage
- 3. Listening Check #2
 - Attach a stethoset
 - Listen again
 - Carefully increase and decrease volume
 - Listen for breaks, buzz, crackling noises

Classroom hearing aid checks

4. Check Student Function

- Use the Ling 7-sound test
 - oo, ah, ee, sh, m, s, or (example for English)
 - These sounds represent the variety of frequencies present in speech
- Set a baseline for each student
 - Use a functioning hearing aid with a good battery
 - Record which sounds the student can perceive from 3 feet away
 - Not all students will hear all 7 sounds
- Daily check
 - Student sits or stands about 3 feet away, wearing his/her hearing aid
 - Cover your mouth with a card
 - Individually present each of the 7 sounds
 - Have the student raise a hand, drop a block into a container, or say "yes," if the sound is heard

Review: Hearing Aids

- Benefits
- Components
- Technologies
- Styles
- Fitting
- Care
- Classroom teacher tasks